Recursive Utility–Epstein-Zin Preferences

Damian Romero*

November, 2024

Our goal is to derive the stochastic discount factor (SDF) when the representative agent has Epstein-Zin (EZ) preferences.¹

1 Preliminaries

In general, an individual has *recursive preferences* if utility satisfies the recursion

$$
V_t = F(C_t, R(V_{t+1})),
$$

where $R(\cdot)$ is a function performing a risk adjustment that helps to compute the certain equivalence of future utility, and $F(\cdot)$ is a time aggregator capturing preferences over the timing of consumption. Note that a particular case would be the one of time separable utility, which can be written as V_t = $u(C_t) + \beta \mathbb{E}_t(V_{t+1})$, for some function $u(\cdot)$.

The EZ preferences are a particular case of recursive preferences in which there is a CES time aggregator and CRRA risk adjustment. Letting $u(C_t)$ to be the utility flow of consumption and V_t the lifetime expected utility, then we have

$$
V_t = \mathbb{E}_t \sum_{j=0}^{\infty} u(C_{t+j}) = u(C_t) + \beta \mathbb{E}_t(V_{t+1}).
$$
\n(1)

Writing [Eq. \(1\)](#page-0-0) in CES form

$$
V_t = \left[(1 - \beta)u(C_t)^{1-\rho} + \beta \left(\mathbb{E}_t (V_{t+1})^{1-\rho} \right) \right]^{\frac{1}{1-\rho}},
$$

where ρ is the inverse of the intertemporal elasticity of substitution, and applying the CRRA risk adjustment

$$
V_t = \left[(1 - \beta)u(C_t)^{1 - \rho} + \beta \left(\mathbb{E}_t (V_{t+1}^{1 - \gamma})^{\frac{1 - \rho}{1 - \gamma}} \right) \right]^{\frac{1}{1 - \rho}}, \tag{2}
$$

we get the EZ recursion. There are three observations about $Eq. (2)$

^{*}Email: dromeroc@bcentral.cl

¹These notes are based on the lecture notes of Nelson Mark and Dejanir Silva.

- 1. The standard CRRA case follows when $\gamma = \rho$.
- 2. The recursion is well defined if $u(\cdot) \ge 0$ everywhere and $V_t \ge 0$. If that is not the case so $u(\cdot) \le 0$ holds, we let $V_t \leq 0$ and define the recursion as

$$
V_t = \left[(1 - \beta) u(C_t)^{1 - \rho} - \beta \left(\mathbb{E}_t \left(-\{V_{t+1}\}^{1 - \gamma}\right)^{\frac{1 - \rho}{1 - \gamma}} \right) \right]^{\frac{1}{1 - \rho}}.
$$

3. The case $\gamma > \rho$ corresponds to a preference for early resolution of uncertainty.

2 Deriving the SDF

Note that Eq. (2) can be written as

$$
V_t = F(C_t, R(V_{t+1})) = \left[(1 - \beta)u(C_t)^{1-\rho} + \beta \left(R(V_{t+1}) \right)^{1-\rho} \right]_t^{\frac{1}{1-\rho}}, \tag{3}
$$

with $R(V_{t+1}) = \left(\mathbb{E}_t(V_{t+1}^{1-\gamma}) \right)$ $\binom{1-\gamma}{t+1}$ $\frac{1}{1-\gamma}$. The partial derivative with respect to current consumption is

$$
\frac{\partial V_t}{\partial C_t} = (1 - \beta) \left(\frac{V_t}{C_t}\right)^{\rho}.
$$

On the other hand, the partial derivative with respect to future consumption is a highly nonlinear object. Therefore, we proceed with the following chain of partial derivatives

$$
\frac{\partial V_t}{\partial C_{t+1}} = \frac{\partial V_t}{\partial R(V_{t+1})} \times \frac{\partial R(V_{t+1})}{\partial V_{t+1}^{1-\gamma}} \times \frac{\partial V_{t+1}^{1-\gamma}}{\partial V_{t+1}} \times \frac{\partial V_{t+1}}{\partial C_{t+1}}
$$

with

$$
\frac{\partial V_t}{\partial R(V_{t+1})} = \beta \left(\frac{V_t}{R(V_{t+1})} \right)^{\rho}
$$
\n
$$
\frac{\partial R(V_{t+1})}{\partial V_{t+1}^{1-\gamma}} = \frac{\partial \left(\mathbb{E}_t(V_{t+1}^{1-\gamma}) \right)^{\frac{1}{1-\gamma}}}{\partial \mathbb{E}_t(V_{t+1}^{1-\gamma})} \times \frac{\partial \mathbb{E}_t(V_{t+1}^{1-\gamma})}{\partial V_{t+1}^{1-\gamma}} \times \frac{\partial V_{t+1}^{1-\gamma}}{\partial V_{t+1}}
$$
\n
$$
= \frac{1}{1-\gamma} R(V_{t+1})^{\gamma} \times 1 \times (1-\gamma) V_{t+1}^{-\gamma} = \left(\frac{R(V_{t+1})}{V_{t+1}} \right)^{\gamma}
$$
\n
$$
\frac{\partial V_{t+1}^{1-\gamma}}{\partial V_{t+1}} = (1-\gamma) V_{t+1}^{-\gamma}
$$
\n
$$
\frac{\partial V_{t+1}}{\partial C_{t+1}} = (1-\beta) \left(\frac{V_{t+1}}{C_{t+1}} \right)^{\rho},
$$

where the last expression uses the partial derivative with respect to current consumption, iterated one period forward.

Combining all the previous elements we have

$$
\frac{\partial V_t}{\partial C_{t+1}} = \beta(1-\beta)V_t^{\rho}C_{t+1}^{-\rho}\left(\frac{V_{t+1}}{R(V_{t+1})}\right)^{\rho-\gamma}.
$$

The SDF between period t and $t + 1$ reads as

$$
M_{t,t+1} = \frac{\partial V_t / \partial C_{t+1}}{\partial V_t / \partial C_t}
$$

$$
M_{t,t+1} = \beta \left(\frac{C_{t+1}}{C_t}\right)^{-\rho} \left(\frac{V_{t+1}}{\left(\mathbb{E}_t(V_{t+1}^{1-\gamma})\right)^{\frac{1}{1-\gamma}}}\right)^{\rho-\gamma}.
$$